数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。
数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。
传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。
本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计
2.1 智能机器人的多传感器系统
机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。
2.2 智能机器人控制系统
机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。
如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。
控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。
(2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。
(3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。
(4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现
智能机器人对于数字化家庭的医疗保健可以提供如下的服务:
(1)医疗监护
通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。
(2)远程诊断和会诊
通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。
3.1机器人视觉与视频信号的传输
机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。
机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程:
(1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。
(2)图像处理。图像到图像的变换,如特征提取。
(3)图像理解。在处理的基础上给出环境描述。
通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求:
(1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。
(2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。
3.2机器人听觉与音频信号的传输
机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。
机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。
声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输
传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。
在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。
4 蓝牙模块的应用
4.1蓝牙技术概况
蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。
4.2蓝牙模块
rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。
4.3主,从设备硬件组成
蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。
将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。
5 结束语
随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。
电厂智能巡检机器人根据使用区域、行进方式的不同,导航方式主要分为以下几种:电磁导航、射频识别导航、激光导航、视觉导航、GPS/惯性导航、超声波导航和SLAM导航。
电磁/射频识别组合导航:电磁导航一般配合RFID(射频识别)一起使用,在地面上铺设磁轨道,其包含多条引导电缆,每条电缆流经不同频率的电流,璞数技术巡检机器人通过感应线圈对电流的检测来感应路径信息,作为移动路线,在需要停止进行巡检的位置预埋RFID,实现精准定位。机器人在巡检过程中,其上的磁传感器阵列检测机器人中心相对于磁轨道的偏差,然后利用运动控制装置调整机器人左右轮的差速,从而使机器人沿磁轨道行驶。机器人需要停止巡检的位置一般由两个RFID标签进行控制,第一个标签为减速点,包含停站点的距离信息,当巡检机器人检测到减速点标签后,即根据停站点距离信息选择合适的多级减速方案,确保机器人在到达精确停站点时处于低速可即停状态,此时当机器人检测到停站点标签时,立即精确停站。电磁导航的优点是巡检机器人能够精准运动,能够做到精准定位,并且抗干扰能力强,缺点是需要预铺磁轨道,机器人不能预测道路变化趋势及不能高速运行,严重限制了机器人的巡检效率。
特斯拉最早明年开始生产人形机器人,你对该机器人都有哪些期待?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。
马斯克表明,特斯拉最早将于明年(即2023年)开始生产制造一款名叫擎天柱(Optimus)的人形机器人。马斯克当天在得克萨斯州奥斯汀市的特斯拉新汽车装配厂揭幕庆典上表明,“大家有希望在明年生产制造第一个版本号的擎天柱机器人。”但是,特斯拉尚未表露这款机器人的工作中原形,因而现阶段外部并不清楚这款名叫擎天柱的人形机器人初代版本号将有多繁杂。
马斯克还表露称,“擎天柱”最后将可以做人们不愿做的事儿,合称这款机器人将为人们提供一个“富裕的时期”。他还开朗地表明,“擎天柱”将“改变命运”,著名水平乃至有可能超出特斯拉,但“这很有可能很难想象。”
特斯拉曾于2021年8月的“人工智能日(AIDay)”上第一次公布展现了这款机器人,其又被称作“特斯拉人形机器人(TeslaBot)”。据兴业证券(601377),这款人形机器人融合了特斯拉的AI技术性,即根据视神经互联网中枢神经系统预测分析工作能力的无人驾驶技术性,具备极强算率的DOJOD1高性能计算机处理芯片,因为每一个D1处理芯片中间全是无缝连接在一起,邻近处理芯片中间的延迟时间极低,练习控制模块较大水平上保持了网络带宽的保存,相互配合特斯拉自编的带宽测试、低延时的射频连接器,算率达到9PFLOPs(9一定亿个)。
但非常值得强调的是,在往年的“人工智能技术日”上,特斯拉提及2022年发布人形机器人的很有可能,而马斯克本周四称最早将于明年开始生产制造“擎天柱”,实际上早已比公司的预估晚了一年。
《每日经济新闻》新闻记者注意到,马斯克初次公布特斯拉人形机器人时,曾表明这款机器人将根据特斯拉自动驾驶电动车所应用的处理芯片和感应器。据马斯克称,“擎天柱”个子为5尺8寸(约173厘米),重125磅(约56KG),走动速率为每钟头5公里(约车速8千米),较多可提45磅(约20KG)的物件,而且头顶部会装有一块显示屏,便于用户可以获得有效的信息内容。
上年11月,特斯拉在其官方网站的招骋网页页面推新公布了与特斯拉人形机器人新项目有关的诸多新职位,工作中地址绝大多数坐落于美国加州。那时候此类新职位大多数与机器人硬件配置与开发软件相关,包含主体性技术工程师、软件工程师、内嵌式固定件技术工程师等。
先前,外部觉得这款机器人不过是特斯拉的人工智能招聘专用工具,但马斯克在2022年1月的财务报告会议电话上表明,开发设计人形机器人将是2022年最重要的工作中。他还表明,伴随着时间的变化,特斯拉的机器人业务流程乃至有超过车辆业务流程的发展潜力。
殊不知,美国科技媒体TheVerge曾在一篇文章中表明,现阶段全世界人形机器人产品研发的头部企业为波士顿动力(BostonDynamics),但即使是波士顿动力,都没有将其机器人称之为是“产品研发”,更没有商业服务布署的定义,马斯克尝试在一年内就超过波士顿动力数十年的工艺累积,让人觉得诧异。
机器人机器人射频的室内定位技术
机器人射频我们经常会在路上听到或看到有关导航和定位的信息机器人射频,但什么是“室内定位”
呢?在一些GPS无法工作的环境(如建筑物内部)中机器人射频,你将用什么工具来寻找路线呢?如果遭受灾难袭击或者被困在某处时,救援人员如何发现你呢?家用机器人室内如何导航呢?
新的技术为室内定位提供可能
5年或者10年以前,业界就已经意识到GPS存在缺陷,例如它无法在室内正常工作(在这种环境中,GPS定位很慢甚至不可能,而且不够准确)。E911政策要求移动运营商定位用户手机必须达到一定的精度。这些运营商是第一个遇到这些问题的人。
GPS逐渐演化为辅助全球定位系统(A-GPS),它使用设备的GPS芯片和移动电话网络(cellular network)来实现定位。然而,由于运营商的网络费用问题,A-GPS还没有被商业LBS服务所使用。因此,Wi-Fi地理定位就成机器人射频了一项替代技术。在存在Wi-Fi 接入点的地方,Wi-Fi的定位精度可达20米。正如我们在“签到(check-in)”中看到的一样,Wi-Fi还无法准确地显示用户签到地点的准确位置。蓝牙则是一种微观层次上的技术,许多建筑物内都正在使用这项技术,因此具有蓝牙功能的手机可以利用这一服务。“全球定位系统 —— Wi-Fi ——蓝牙——射频识别技术”串起了定位技术发展的主线,设备需要尽量接近于Wi-Fi接入点或者蓝牙节点,设备中的传感器、陀螺仪、罗盘、加速计等都可以为导航和追踪提供“辅助”数据。
国际室内定位技术的发展
Skyhook 和Navizon都是Wi-Fi定位的领军企业。接下来,他们正在准备融入更为广阔的定位技术和服务,即不断地与GPS芯片制造商或者原始设备制造商(OEM)进行合作,例如苹果公司(Skyhook已嵌入到iPhone中)。移动运营商也已经意识到Wi-Fi定位将极大地缩短首次定位时间(TTFF),仅使用GPS的话,首次定位时间可能会大于1分钟;使用A-GPS,首次定位时间可缩短到12秒;如果使用Wi-Fi,这一时间仅为2秒。因此,对于iPhone手机用户而言,70%的定位服务都是通过Wi-Fi定位来实现的,而并非GPS。
Rosum公司是由一些GPS架构师创办的,他们深知GPS无法在室内正常工作,因此希望找到一种替代方案。该方案利用数字式电视基站技术实现定位,通过为电视信号嵌入时间码,从而获取用户的位置信息。在过去的几年里,Rosum公司一直在致力于生产一种小到可以嵌入设备的芯片。该芯片对于手机而言还是显得有些大,不过将其电视芯片嵌入笔记本电脑中已经不成问题。
机器人耦合比概念是以光为媒介传输电信号的一种电一光一电转换器件。
根据机器人参数资料机器人射频,耦合器是从无线信号主干通道中提取出一小部分信号的射频器件机器人射频,与功分器一样都属于功率分配器件,不同的是耦合器是不等功率的分配器件,耦合器与功分器搭配使用。
机器人是一台机器,尤其是一个可编程由计算机能够自动地进行一系列复杂的动作。
通过指令信息完成保安巡逻机器人在所处环境里机器人射频的自主巡逻、移动控制和报警控制机器人射频,主要包括指令信息输入模块、指令信息接收模块、 单片机控制模块、PC104核心控制系统机器人射频,所述PC104核心控制模块分别与指令机器人射频,信息介模块和各单片机控制模块电气连接机器人射频,而指令信息输入模块与指令信息 接收模块是以射频无线方式传送信号