移动机器人(AGV)
移动机器人(AGV)是工业机器人真空焊接机器人的一种类型,它由计算机控制,具有移动、自动导航、多传感器控制、网络交互等功能,它可广泛应用于机械、电子、纺织、卷烟、医疗、食品、造纸等行业的柔性搬运、传输等功能,也用于自动化立体仓库、柔性加工系统、柔性装配系统(以AGV作为活动装配平台)真空焊接机器人;同时可在车站、机场、邮局的物品分捡中作为运输工具。
国际物流技术发展的新趋势之一,而移动机器人是其中的核心技术和设备,是用现代物流技术配合、支撑、改造、提升传统生产线,实现点对点自动存取的高架箱储、作业和搬运相结合,实现精细化、柔性化、信息化,缩短物流流程,降低物料损耗,减少占地面积,降低建设投资等的高新技术和装备。
点焊机器人
焊接机器人具有性能稳定、工作空间大、运动速度快和负荷能力强等特点,焊接质量明显优于人工焊接,大大提高了点焊作业的生产率。
点焊机器人主要用于汽车整车的焊接工作,生产过程由各大汽车主机厂负责完成。国际工业机器人企业凭借与各大汽车企业的长期合作关系,向各大型汽车生产企业提供各类点焊机器人单元产品并以焊接机器人与整车生产线配套形式进入中国,在该领域占据市场主导地位。
随着汽车工业的发展,焊接生产线要求焊钳一体化,重量越来越大,165公斤点焊机器人是当前汽车焊接中最常用的一种机器人。2008年9月,机器人研究所研制完成国内首台165公斤级点焊机器人,并成功应用于奇瑞汽车焊接车间。2009年9月,经过优化和性能提升的第二台机器人完成并顺利通过验收,该机器人整体技术指标已经达到国外同类机器人水平。
弧焊机器人
弧焊机器人主要应用于各类汽车零部件的焊接生产。在该领域,国际大型工业机器人生产企业主要以向成套装备供应商提供单元产品为主。
关键技术包括:
(1)弧焊机器人系统优化集成技术:弧焊机器人采用交流伺服驱动技术以及高精度、高刚性的RV减速机和谐波减速器,具有良好的低速稳定性和高速动态响应,并可实现免维护功能。
(2)协调控制技术:控制多机器人及变位机协调运动,既能保持焊枪和工件的相对姿态以满足焊接工艺的要求,又能避免焊枪和工件的碰撞。
(3)精确焊缝轨迹跟踪技术:结合激光传感器和视觉传感器离线工作方式的优点,采用激光传感器实现焊接过程中的焊缝跟踪,提升焊接机器人对复杂工件进行焊接的柔性和适应性,结合视觉传感器离线观察获得焊缝跟踪的残余偏差,基于偏差统计获得补偿数据并进行机器人运动轨迹的修正,在各种工况下都能获得最佳的焊接质量。
激光加工机器人
激光加工机器人是将机器人技术应用于激光加工中,通过高精度工业机器人实现更加柔性的激光加工作业。本系统通过示教盒进行在线操作,也可通过离线方式进行编程。该系统通过对加工工件的自动检测,产生加工件的模型,继而生成加工曲线,也可以利用CAD数据直接加工。可用于工件的激光表面处理、打孔、焊接和模具修复等。
关键技术包括:
(1)激光加工机器人结构优化设计技术:采用大范围框架式本体结构,在增大作业范围的同时,保证机器人精度;
(2)机器人系统的误差补偿技术:针对一体化加工机器人工作空间大,精度高等要求,并结合其结构特点,采取非模型方法与基于模型方法相结合的混合机器人补偿方法,完成了几何参数误差和非几何参数误差的补偿。
(3)高精度机器人检测技术:将三坐标测量技术和机器人技术相结合,实现了机器人高精度在线测量。
(4)激光加工机器人专用语言实现技术:根据激光加工及机器人作业特点,完成激光加工机器人专用语言。
(5)网络通讯和离线编程技术:具有串口、CAN等网络通讯功能,实现对机器人生产线的监控和管理;并实现上位机对机器人的离线编程控制。
真空机器人
真空机器人是一种在真空环境下工作的机器人,主要应用于半导体工业中,实现晶圆在真空腔室内的传输。真空机械手难进口、受限制、用量大、通用性强,其成为制约了半导体装备整机的研发进度和整机产品竞争力的关键部件。而且国外对中国买家严加审查,归属于禁运产品目录,真空机械手已成为严重制约我国半导体设备整机装备制造的“卡脖子”问题。直驱型真空机器人技术属于原始创新技术。
关键技术包括:
(1)真空机器人新构型设计技术:通过结构分析和优化设计,避开国际专利,设计新构型满足真空机器人对刚度和伸缩比的要求;
(2)大间隙真空直驱电机技术:涉及大间隙真空直接驱动电机和高洁净直驱电机开展电机理论分析、结构设计、制作工艺、电机材料表面处理、低速大转矩控制、小型多轴驱动器等方面。
(3)真空环境下的多轴精密轴系的设计。采用轴在轴中的设计方法,减小轴之间的不同心以及惯量不对称的问题。
(4)动态轨迹修正技术:通过传感器信息和机器人运动信息的融合,检测出晶圆与手指之间基准位置之间的偏移,通过动态修正运动轨迹,保证机器人准确地将晶圆从真空腔室中的一个工位传送到另一个工位。
(5)符合SEMI标准的真空机器人语言:根据真空机器人搬运要求、机器人作业特点及SEMI标准,完成真空机器人专用语言。
(6)可靠性系统工程技术:在IC制造中,设备故障会带来巨大的损失。根据半导体设备对MCBF的高要求,对各个部件的可靠性进行测试、评价和控制,提高机械手各个部件的可靠性,从而保证机械手满足IC制造的高要求。
洁净机器人
洁净机器人是一种在洁净环境中使用的工业机器人。随着生产技术水平不断提高,其对生产环境的要求也日益苛刻,很多现代工业产品生产都要求在洁净环境进行,洁净机器人是洁净环境下生产需要的关键设备。
关键技术包括:
(1)洁净润滑技术:通过采用负压抑尘结构和非挥发性润滑脂,实现对环境无颗粒污染,满足洁净要求。
(2)高速平稳控制技术:通过轨迹优化和提高关节伺服性能,实现洁净搬运的平稳性。
(3)控制器的小型化技术:根据洁净室建造和运营成本高,通过控制器小型化技术减小洁净机器人的占用空间。
(4)晶圆检测技术:通过光学传感器,能够通过机器人的扫描,获得卡匣中晶圆有无缺片、倾斜等信息。
世界焊接发展史话
公元前3000多年埃及出现了锻焊技术。
公元前2000多年中国的殷朝采用铸焊制造兵器。
公元前200年前,中国已经掌握了青铜的钎焊及铁器的锻焊工艺。
1801年:英国H.Davy发现电弧。
1836年:Edmund Davy 发现乙炔气。
1856年:英格兰物理学家James Joule 发现了电阻焊原理。
1959年:Deville和Debray发明氢氧气焊。
1881年:法国人 De Meritens 发明了最早期的碳弧焊机。
1881年:美国的R. H. Thurston 博士用了六年的时间,完成了全系列铜-锌合金钎料在强度与延伸性方面的全部实验。
1882年:英格兰人Robert A. Hadfield发明并以他的名字命名的奥氏体锰钢获得了专利权。
1885年:美国人Elihu Thompson 获得电阻焊机的专利权。
1885年:俄罗斯人 Benardos Olszewski 发展了碳弧焊接技术。
1888年:俄罗斯人H.г.Cлавянов 发明金属极电弧焊。
1889—1890年:美国人C. L. Coffin首次使用光焊丝作电极进行了电弧焊接。
1890年;美国人C. L. Coffin提出了在氧化介质中进行焊接的概念。
1890年:英国人Brown 第一次使用氧加燃气切割进行了抢劫银行的尝试。
1895年:巴伐利亚人 Konrad Roentgen 观察到了一束电子流通过真空管时产生X射线的现象。
1895年:法国人 Le Chatelier 获得了发明氧乙炔火焰的证书。
1898年:德国人Goldschmidt发明铝热焊。
1898年:德国人克莱菌.施密特发明铜电极弧焊。
1900年:英国人Strohmyer发明了薄皮涂料焊条。
1900年:法国人 Fouch 和 Picard制造出第一个氧乙炔割炬。
1901年:德国人Menne 发明了氧矛切割。
1904年:瑞典人奥斯卡.克杰尔贝格建立了世界上第一个电焊条厂—ESAB公司的OK焊条厂。
1904年:美国人Avery 发明了便携式钢瓶。
1907年:在美国纽约拆除旧的中心火车站时,由于使用氧乙炔切割节省工程成本的20%多。
1907年:10月 瑞典人O. Kjellberg 完善了厚药皮焊条。
1909年:Schonherr 发明了等离子弧。
1911年:由Philadelphia Suburban气体公司建成了第一条使用氧溶剂气焊焊接的11英里长管线。
1912年:第一根氧乙炔气焊钢管投入市场。
1912年:位于美国费城的Edward G. Budd 公司生产出第一个使用电阻点焊焊接的全钢汽车车身。
大约1912:年 美国福特汽车公司为了生产著名的T型汽车,在自己工厂的实验室里完成了现代焊接工艺。
1913年:在美国的印第安纳波利斯 Avery 和 Fisher完善了乙炔钢瓶。
1916年:安塞尔.先特.约发明了焊接区X射线无损探伤法。
1917年:第一次世界大战期间使用电弧焊修理了109艘从德国缴获的船用发动机,并使用这些修理后的船只把50万美国士兵运送到了法国。
1917年:位于美国麻萨诸塞州的Webster Southbridge 电气公司使用电弧焊设备焊接了11英里长、直径为3英寸的管线。
1919年:Comfort A.Adams组建了美国焊接学会(AWS)。
1924年美国焊接协会活动时纪念照片
1919年:C.J.Halslag发明交流焊。
1920年:Gerdien发现等离子流热效应。
1920年:第一艘全焊接船体的汽船 Fulagar号在英国下水。
大约1920年:开始使用电弧焊修理一些贵重设备。
大约1920年:使用电阻焊焊接钢管的生产方法(The Johnson Process)获得了专利。
大约1920年:第一艘使用焊接方法制造的油轮Poughkeepsie Socony号在美国下水。
大约1920年:药芯焊丝被用于耐磨堆焊。
1922年:Prairie 管道公司使用氧乙炔焊接技术,成功地完成了从墨西哥到德克撒斯的直径为8英寸,长达140英里的原油输送管线的铺设工作。
1923年:斯托迪发明堆焊。
1923年:世界上第一个浮顶式储罐(用来储存汽油或其他化工品)建成;其优点是由焊接而成的浮顶与罐壁组成象望远镜一样可升高或降低的储罐,从而可以很方便的改变储罐的体积。
1924年:Magnolia 气体公司使用氧乙炔焊接技术建成了14英里长的全焊结构的天然气管线。
1924年:在美国由H.H.Lester首先使用X光线照相术,为Boston Edison 公司的发电厂检验蒸汽压力为8.3Mpa的待安装的铸件质量。
1926年:美国Langmuir发明原子氢焊。
1926年:美国Alexandre发明CO2气体保护焊原理。
1926年:由美国的A.O.Smith公司率先介绍了在电弧焊接用金属电极外使用挤压方式涂上起保护作用的固体药皮(即手工电弧焊焊条)的制作方法。
1926年:铬钨钴焊材合金获得了第一份关于药芯焊丝的专利。
1926年:美国人M.Hobart和 P.K.Devers获得了使用氦气作为电弧保护气体的专利。
1927年:由Lindberg单独驾驶Ryan式单翼飞机成功地飞过了大西洋,该飞机机身是由全焊合金钢管结构组成的。
1928年:第一部结构钢焊接法规《建筑结构中熔化焊和气割规则》由美国焊接学会出版发行,这部法规就是今天的《D1.1结构钢焊接规则》的前身。
1930年:Georgia 铁路中心为了在两条隧道中铺设铁路采用了连续焊接的方法。焊接轨道在两年后线路贯通时投入使用。
1930年:前苏联罗比诺夫发明埋弧焊。
1931年:由焊接工艺制造全钢结构组成的帝国大厦建成。
1933年:第一条使用电弧焊工艺焊接的接头采用无衬垫结构的长输管线铺成。
1933年:当时世界上最高的悬索桥旧金山的金门大桥建成通车,她是由87750吨钢材焊接拼成的。
1934年:巴顿焊接研究所成立。
巴顿所创始人叶夫金·奥斯卡洛维奇·巴顿
欧洲最大的全焊接第涅伯河上铁桥—巴顿桥
1934年:非加热压力容器规范由API—ASME合作出版发行 。
1935年:美国的Linde Air Products公司完善了埋弧焊技术。
1936年:瑞士Wasserman发明低温钎焊。
1939年:美国Reinecke发明等离子流喷枪。
1940年:第一艘全焊接船Exchequer号在美国的Ingalls 船坞建成下水。
1941年:美国人Meredith 发明了钨极惰性气体保护电弧焊(氦弧焊)。
1941年:二次世界大战时舰艇、飞机、坦克及各种重武器的制造采用了大量的焊接技术。
1943年:美国Behl发明超声波焊。
1943年:飞机的制造者们首次使用原子氢焊、埋弧焊和熔化极气体保护焊焊接飞机钢制螺旋桨的空心叶片。
1944年:英国Carl发明爆炸焊。
1947年:前苏联Bopoшeвич(沃罗舍维奇)发明电渣焊。
1949年:第一台使用弧焊和电阻焊工艺制造的全焊结构的FORD牌汽车下线。
1950年:美国人Muller,Gibson和Anderson三人获得第一个熔化极气体保护焊喷射过度的专利。
1950年:德国F.Buhorn发现等离子电弧。
大约1950年:在前苏联首次把电渣焊用于生产。
1953年:美国Hunt发明冷压焊。
1953年:前苏联柳波夫斯基、日本关口等人发明CO2气体保护电弧焊。
1954年:自保护药芯焊丝在美国Lincoln电气公司投入生产。
1954年:第一艘采用焊接工艺制造的核潜艇The Nautilus号开始为美国海军服役。
1954年:贝纳德发明了管状焊条。
1955年:美国托姆.克拉浮德发明高频感应焊。
1956年:中国成立了哈尔滨焊接研究所
1956年:前苏联楚迪克夫发明了摩擦焊技术
1957年:法国施吉尔发明电子束焊。
1957年:前苏联卡扎克夫发明扩散焊。
1957年:《焊接》创刊,这是中国第一本焊接专业杂志。
大约1957年:美国、英国和前苏联都在熔化极气体保护焊短路过度工艺中使用了CO2作为保护气体。
1960年:美国Maiman发现激光,现激光已被广泛的应用在焊接领域。
1960年:美国的Airco 推出熔化极脉冲气体保护焊工艺。
1962年:气电立焊的专利权授予了比利时人Arcos。
1962年:电子束焊接首先在超音速飞机和B-70轰炸机上正式使用。
1964年:热丝焊接方法和协调控制熔化极气体保护焊接方法的专利权授予了美国人Manz。
1965年:焊接而成的Appllo 10号宇宙飞船登月成功。
1967年:日本荒田发明连续激光焊。
1967年:世界上第一条海底管线在墨西哥湾铺设成功,它是由美国的Krank Pilia公司使用热螺纹工艺及焊接工艺制造而成的。
1968年:在芝加哥的 John Hancock 中心的22层以上焊接而成了世界上最高的锐角形钢结构,高度达到1107英尺。
1969年:美国的Linde公司提出热丝等离子弧喷涂工艺。
1970年:晶闸管逆变焊机问世。
1976年:日本荒田发明串联电子束焊。
1980年左右:半导体电路和计算机电路被广泛的用来控制焊接与切割过程。
1980年左右:使用蒸汽钎焊焊接印刷线路板。
1983年:航天飞机上直径为160英尺的瓣状结构的圆形顶部是使用埋弧焊和气保护焊方法焊接而成的,使用射线探伤机进行检验的。
1984年:前苏联女宇航员Svetlana Savitskaya在太空中进行焊接试验。
1988年:焊接机器人开始在汽车生产线中大量应用。
1990年左右:逆变技术得到了长足的发展,其结果使得焊接设备的重量和尺寸大大的下降。
1991年:英国焊接研究所发明了搅拌摩擦焊,成功的焊接了铝合金平板。
1993年:使用机器人控制CO2激光器成功的焊接了美国陆军 Abrams型主战坦克。
1996年:以乌克兰巴顿焊接研所B.K.Lebegev院士为首的三十多人的研制小组,研究开发了人体组织的焊接技术。
2001年:人体组织焊接成功应用于临床。
2002年:三峡水轮机的焊接完成,是已建造和目前正在建造的世界上最大的水轮机。
工业机械手有四轴、五轴、六轴、多轴等类型,主要用于电子、汽车、半导体等行业的搬运,移栽,码垛,点胶,喷涂,检测,切割等应用。鑫台铭直角坐标机械手,桁架机器人,机床上下料机械手等工业机器人用途广泛。
根据百度百科的介绍,工业机器人是面向工业领域的多关节机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
工业机器人的典型应用包括焊接、刷漆、组装、采集和放置(例如包装、码垛和SMT)、产品检测和测试等,具有高效性、持久性、高效率和准确性。
工业机器人是先进制造业的关键支撑装备。中国制造业想要实现智能制造,不仅需要开发、应用多种多样的工业机器人,更要加快发展以全自主编程智能工业机器人、人机协作机器人为代表的六大标志性工业机器人,推进工业机器人向中高端迈进。
1.全自主编程智能工业机器人
根据《机器人产业发展规划》的相关规定,满足智能制造及先进制造业发展的全自主编程工业机器人,自由度要在6以上,适应工件尺寸范围在1m*1m*0.3m以上。该类工业机器人需要具备智能工艺专家系统,自动获取信息,生成作业程序(全过程非示教,自动编程时间小于1秒),以满足喷涂、抛光、打磨等复杂的作业要求。
2.弧焊机器人
弧焊机器人即用于自动弧焊的工业机器人,其组成原理与点焊机器人基本相同,主要应用于各类汽车零部件的焊接生产。弧焊机器人通常由机器人本体、控制系统、示教器、焊接电源、焊枪、焊接夹具、安全防护设施等多个部分组成。
在向中高端升级的过程中,弧焊机器人要广泛应用焊缝轨迹电弧跟踪、高压接触感知、焊缝坡口宽度电弧跟踪等多种关键技术,集中研发6自由度多关节机器人,达到中厚板弧焊机器人额定负载≥10kg,薄板弧焊机器人额定负载6kg等技术指标。
3.人机协作机器人
人机协作机器人是与人类在共同工作空间中有近距离互动的机器人,是当下工业机器人领域的发展重点。以往大部分的工业机器人是自动作业或是在有限的导引下作业,不需要考虑和人类近距离互动。而随着工业4.0越来越近,人与机器携手合作、发挥各自的专长,也就越来越必要,越来越迫切了。
面向未来智造趋势的人机协作机器人,应是6自由度以上的多关节机器人,自重负载比小于4,重复定位精度±0.05mm,力控精度5N,碰撞安全监测响应时间0.3s,选配本体感应皮肤的整臂安全感应距离1cm,防护等级IP54。应适用于柔性、灵活度和精准度要求较高的行业(如电子、医药、精密仪器等),同时满足更多工业生产中的操作需要。
4.重载AGV
AGV即无人搬运车(Automated Guided vehicle)的简称。通过装备自动化导引装置,AGV可以沿规定路径行驶,并完成物料搬运与安全保护,可代替叉车及拖车等传统搬运设备,实现少人化乃至无人化操作。
AGV机器人具有极高的工作效率,不仅大大降低了人工成本,也极大地减少了工作中的意外事故,因此在工业领域异常火热,也是未来智能制造领域必不可少的搬运装备。
在促进工业机器人迈向中高端领域的过程中,重载机器人是一大标志性产品。根据《机器人发展规划》,重载AGV的指标有以下几项——
驱动方式:全轮驱动;最大负载能力40000Kg;最大速度:直线20m/min;转弯半径:2m;辅助磁导航精度:±10mm;防碰装置:激光防碰;举升装置:车体自举升;举升行程:最大100mm。
5.双臂机器人
随着现代制造业不断向智能制造方向迈进,单臂机器人的局限性越来越明显,不能完成的工作任务、不能适应工作场景越来越多。在此情况下,双臂机器人应运而生。双臂双动力器人模仿了人体双臂的协作原理、具备双臂分别操作功能。双臂甚至多臂协作机器人,完美适应并有效促进了智能制造,实现了机器与人的完美协同、共存共享。
根据《机器人产业发展规划》,双臂机器人的核心指标包括以下几个方面——
每个单臂6自由度以上,关节转动速度≥±180°/s,双臂平均功耗500W,拥有双臂碰撞检测的路径规划功能,集成双目视觉定位误差1mm,2指/3指柔性手爪行程≥50mm,抓取力≥30N,重复定位精度±0.05mm,适用于3C电子等行业的零件组装产线。
6.真空(洁净)机器人
真空(洁净)机器人是一种在真空环境下工作的机器人,主要应用于半导体工业中,实现晶圆在真空腔室内的传输。研发真空机器人的关键技术包括真空环境下传动润滑、直驱控制、动态偏差检测与校正及碰撞检测与保护等。
真空机械手通用性强、用量大、受限制、难进口,是制约半导体装备整机的研发进度和整机产品竞争力的关键部件,当下已成为严重制约我国半导体设备整机装备制造的“卡脖子”问题。
根据相关政策标准,符合我国智能制造现实的真空机器人,应满足真空最大负载15kg,洁净最大负载210kg,重复定位精度±0.05~0.1mm等核心指标。
QQ机器人小冰功能如下真空焊接机器人:
1、可以问qq小冰天气真空焊接机器人,例如“@小冰 XX天气”。
2、可以玩游戏真空焊接机器人,真空焊接机器人我们可以“@小冰 猜成语”,根据给的表情猜成语。如果不玩了,可以“@小冰 不玩了”。
3、更多qq小冰的功能玩法,可以直接“@小冰 功能”,就会列出有哪些好玩的了。
4、让qq小冰讲笑话,不过你还得跟它商量来,开始可以“@小冰 笑话”它可能就给你个笑话。
5、还有就是在qq机器人设置里,可以设置新人欢迎语。