机器人工程就业方向及前景如下:
机器人工程就业方向:
本专业学生毕业后可在机器人设计研究单位、制造企业和综合应用公司从事机器人工作站设计、装配、调整和改造、机器人自动生产线设计、应用和运营管理等技术或管理岗位。
机器人工程的就业前景:
随着“中国制造2025”的提出,工业机器人产业成为热点。工业机器人被称为“制造业黄光之珠”。工业机器人已被用于取代汽车制造、3C电子制造、五金制造、陶瓷卫浴、物流和交通等各个行业的人。
人工智能是大势所趋。未来十年,劳动密集型产业85%以上的工业生产将逐步被智能工厂取代,比如梅赛德斯-奔驰在德国的辛德芬根工厂,它是一个拥有4500个工业机器人的超智能工厂。
工业机器人产业发展前景广阔。目前,市场上相应的人才供给明显不足,技术项目的研发人才更为稀缺。这种人才缺口将逐年扩大。因此,未来很长一段时间,对工业机器人相关技术人才的需求量很大。
机器人工程课程:
电气工程、机器人机械系统、机器视觉、机器人控制技术、单片机原理与应用、ARM嵌入式开发、电气工程CAD、传感技术、C语言编程、电力电子技术、现场总线技术。
电动机、电气控制与PLC、智能机器人、python人工智能开发、,机器人编程、工业机器人、服务机器人、人工智能控制等。
这个开发流程单拉哪个环节出来都够写一个长文,这里只能简单说一下我自己的认识。按照时间顺序,一个批量机器人产品的开发由以下几个流程组成:
1. 需求分析和产品定义。
产品管理人员在这个阶段搜集市场信息,走访客户,了解竞争对手,最终总结出一种产品需求,以及需求所针对的典型行业和典型工艺。根据市场提出市场预期,一年能卖多少台,目标价格区间,目标行业应用的现状和发展趋势等。根据需求,提出一份产品性能指标,定量的具体的对预期产品进行产品功能层面的描述,例如使用环境,工作范围,最高速度,额定负载,实现某典型工艺轨迹的时间,IP等级,电源类型,重量限制,使用寿命,需要遵循哪些认证和标准等等。
这里需要的技能是对行业,对市场,对成本,对公司战略,对其他开发环节和生产制造过程的综合认识以及商业敏感。这是在长期工作中慢慢建立起来的。
2. 前期研究和可行性分析
针对前一步提出的产品性能指标,机械,仿真,驱动,电气,软件领域的工程师开始从各自的技术角度对指标进行评估。主要从技术可行性和成本两个方向切入,期间还需要采购和生产人员的协助。目标是确定在技术和成本间是否存在一个可盈利的平衡点。在这个阶段另一个重要内容是对竞争对手相似产品进行详尽的分析和测试,尽可能把对手的经验转化为自己产品的优势。
本阶段结束后会得到一个概念方案,并且对开发周期和成本有了估计。这些内容会以可行性分析报告,项目计划,成本分析,风险评估等形式成为输出文档供管理层决策是否正式开始开发项目。
在这个阶段各个领域都会有资深的工程师参加。各个领域涉及的知识和技术会在后面其他开发阶段介绍。
3. 计算与仿真
前面的概念方案虽然缺乏大部分细节,但依靠大致的尺寸,负载,速度,典型工艺轨迹等信息已经可以对产品进行粗略的建模和仿真计算。依照概念方案中的几何尺寸信息可以建立机器人的运动学模型。在这样的基础上,外部负载是已经定义,自然质量负载和摩擦力根据经验估计,这样可以进一步获得动力学模型。以目标速度和轨迹作为输入进行动力学仿真就获得了两项重要的数据:a. 各驱动轴扭矩;b. 各关节受力情况;
其中前者作为驱动系统开发和选型的依据,而后者是机械结构设计的依据。
仿真计算工作是机器人开发过程中系统层和元件层的接口,面向产品功能的性能指标在这里被转化为面向技术实现的各元件性能参数。
在这个阶段格外需要经典力学,多体动力学仿真,对机械系统,电气系统以及控制理论的综合知识要有深刻的理解。需要熟练使用仿真计算工具,Matlab/Simulink, Modelica, Adams, 或各种机器人领域内的软件。当然工具的使用并不是最重要的,对知识的理解永远是第一位。
4. 驱动系统选型开发
驱动系统包括从电源,伺服驱动器,电机,到减速机的一系列元件,更多被叫做powertrain。因为不同元件涉及的领域差别较大,通常由电力电子(power electronic),伺服电机,减速机三个领域的工程师合作完成。
根据经仿真计算得出的转速扭矩需求,在上述三个领域内的产品内选择已有的标准型号,在标准型号的基础上进行优化,或开发新型号。这里设计的三个元件驱动器,伺服电机,减速机是工业机器人最核心的三个零部件,承载了物理层的大部分关键技术,也是元件成本的大头。三个元件都是工业系统中的常用元件,但对性能要求与其他应用(除了精密加工和航空航天)比要高一些。因为安装空间有限且封闭,在紧凑型和热量管理上的要求尤其高。
在这个阶段,工程师需要对相关领域的知识有深入理解,例如电力电子,电机驱动与控制 (基于空间向量),电机(主要是无刷永磁电机)设计,电机相关的电磁学,各种减速机设计和应用,轴承与润滑等。如果不涉及元件开发只是选型则需要对各种元件的性能参数有深入的理解,且有大量应用经验。
5. 机械设计
常规的运动系统机械设计。设计输入有以下几方面,一是经过仿真计算的机械部分子系统性能指标(长度,空间运动范围,重量),二是各节点受力分析,三是驱动系统的安装要求,四是功能性能指标中对安装方式和应用环境的要求。综合这些输入,机械工程师需要选择适当的材料,设计合理的结构实现以上要求。
其中力学分析结果作为有限元分析的输入,由机械工程师对设计进行有限元计算,验证结构的强度。
知识结构上:机械设计,材料,有限元,熟悉相关标准,了解各种加工工艺(铸造,压铸,塑料成型,钣金,焊接),熟练使用CAD软件(ProE, UG, Catia, Inventor),有限元计算,还有更重要的,经验,经验,经验。
6. 控制柜设计
典型的工业驱动控制系统电气柜设计。柜体为驱动系统中的电源和启动器,控制系统中的工控计算机(大多厂商选择工控计算机而不是PLC加运动控制器方案),以及通信总线系统提供安装,操作,维护的环境。布局,热量管理,以及相关设计标准(IEC, UL, GB, CE)的执行是关键。
知识体系:低压电气系统设计,伺服驱动系统应用,电气柜风道和散热设计,本质安全,现场总线的连接,各种设计标准。熟练使用CAD软件(Eplan, Autodesk)
机器人工程是中国普通高等学校本科专业。机器人工程主要研究工业机器人的结构、设计、应用等方面的基本知识和技术,进行机器人工作站的设计、装调与改造等,以提高工业生产的效率。例如:工业生产线使用的机器人的设计研发,自动焊接机器人的制造,激光加工机器人的装调等。
《高级语言程序设计》、《电路分析》、《机械设计基础》、《自动控制原理》、《微机原理及接口技术》、《电机与电气控制技术》、《单片机原理及其应用》、《机械制造基础》、《PLC原理与应用》、《工业机器人控制系统》、《运动控制系统》、《工业机器人计算机编程》。
就业方向:
机器人类企业:机器人设计、装配、调试、改造、技术开发、机器人自动化生产线的设计、应用开发、程序设计、运行管理; 工业类企业:自动控制、设备运行、自动化生产。
以上内容参考:百度百科-机器人工程